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VIBRATION FREQUENCIES OF A CIRCULAR CYLINDER
OF FINITE LENGTH IN AN INVISCID FLUID

Introduction

The customary procedure for btaking into account the effect of the
surrounding fluid on the vibration of a free-free bean is to increase the
magnitude of {he mass per unlt length of the beawm by the added mass al each
section, considered as a two-dimensional form, with a correction factor for
the three-dimension ty of the flow. In the present work there are comp%_ 23,

\i:r s particular casey® the natural Ffreguencies of vibration obtained by

: are 00&;?5’%35 )
trip-theory procedurg\mth e values given by s more exact formulation

of the problem, in which the effect of the presence of the fiunid is incorpo-
rated properly into the vibration equationm For this purpose the flex-
ural vibration of a uniform circular cylinder of finite length was selected

for study. k

Generel Prccedure

The displacement of the beam in e mode of frequency ¢ will be
assumed to be of the form

NG, L) = v(E)am et (1)

in which 2z denotes distance along the éxis of the cylinder, which exbtends
from z=-1 to z=1. The amplitude of the vibration, v(z) , is called
the displacement function of the besm. By differenmtiating (1) with respect
to time one obtains @yv(z) as the corresponding velocity function.

The veloclty potential for the motion of the fluid, @ s mey simi-
larly be expressed in the form

P(n0,3.t) = ¢ (r83)%nat (2)

in terms of cylindricel coordinates with origin et the center of the beam.
Both @ and. <P satisfy Laplace's equation.

* Numbers in [ ] indicate references at end of this report.
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The maximm kinetic energy of the beam is given by
I :-_,,_uvjswgvcg)d@ (3)

vhere 8 is the radius of the cylinder and Ps its dengity, assumed to be
a constant. For flexural vibrations the meximum potentisl energy V is [2]

- T A p i 1%
V- 6@){3553.‘1%(5)] d3 (4)

where E ig the meodulus of elasticity. Furthermore it will be seen that the
amplitude of the kinetic energy of the fluild due to the vibrstion of the beam
can also be expressed ln fterms of the displacement function in the form

T -4y wzfﬂA(’; 2 UE) V) d d3 (s)

vhere Pf is the density of the fluid. Thus the amplitude of the totsl

kKirnetic energy is expressible in the form
T=T+T = wf {[mﬁé@ A IEvGdsdy (@)
vhere a( (é" ,5 } is the Dirsc delta function

£
d.3)=0, b33 [ﬁ&zy,wg: o

If the "added-mass” function A(§ % }  were known, one could cbtain
the vibration frequencies by the Rayleigh~Ritz method from the expressions for
V end T in {(4) and (6). RBecause the solution of the potential-flow problem
is obtained from an integral equation which may be solved by the use of quad-
reture formulas, it was coavenlent to approximete the integrals for ‘J‘JS and
V also by means of gquedrature formulas. The pobential end kinetic energies

re thus expressed os quadratic forms in a finite numbe% of terms from which
the natural fregquencies of the body-fluid sysatienm can be obtained ss the eigen-
values of the pobential~energy matrix with respsct to the ﬁotaj.wenezgy matri,



these metrices being composed of the coefficients of the respective quadratic
forms [1].

Quadratic Forms for V and Tg -

An unsuccessful inltial attempt to solve the problem will first be
briefly described. A quadrature formulae was used to replace the integral for
T s in (1). Next the inter?ola;f:ion polynomial corresponding to the quadravure
formula was differentimted twlce., The resulting polynomlal was squared and
a quadrature formula was then used to approximate the second integral. This
attempt was not successful, because the resulting quadratic form for the poten-
tial energy derived from the second integral was not positive definite. It is
believed that the difficulty wvas caused by the numerical approximetion of
v"(g) , the second derivative of v(g) .

To avold the numerical differentistion, it was declded to find s
suitable interpolation polynomial for v"(%) and then by integration to obtain
an expression spproximating v( %) . This is the procedure which will now be
described in detail.

The conditions to be met by the interpolation polynomiel, p(g.) s
are that it be equal to v"(2} at certain prescribed points, 93 , and also

that it satisfy the same end conditions as the function v(%) For a free=
free besm ~ that is, one which is not restrained at either end - these condi«
tions are
v = 0 8
}
’U'”(;)fé:i-‘ — O (9)

Therefore, the conditions prescribed for v %) are

N o d . AR
(a) P(Zy) = 4, **;Iz-zé‘

») PEl) = 0
(e) Pel) = 0

3=8

]

il

1z

T30 = 33963 G3n)
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and

7? 3"‘) - ﬁjl/ (3 'ék) \3=53

where the prime indicetes differentiation with respect to P2 in the right

member and omission of the "factor with kX = j in the left ohe, then the exw
pregsion

% P‘-—l (} “2/‘3) CL
2 (3-8 R/ Gy=50) !
satisfies condition (a) becauie at g = A
ﬂ,(?ﬁ'?}k) A
G G-3) — Y

where Sij = 0 or 1 according as i 74 J or i=3.

For an interpoletion polynomiel which does not include the end points
among the 2 , the end conditions may be satisfied by including a factor
1)2/( 3,) which reduces to unity when 3= 9 % 0 and is zero when
é; + 1 . Also, the first derivative is zero when 3= 1 . 'The desired
interpoletion polynomial will then be

G A
P = ;(3--») G G H

The next step is to determine an approximation, g 3)1 to v g.) in

terms of the quantities dj - This msy be done by teking. .

, ¥ é .‘
Ui3) = a(3) = r[ Pw) du dov + Gy + C, (11)
1 0 o
The polynomial p(u) mey be taken in the form

p-t

Pauy=9 (1) _dj B uf
f; G171 (iman) ;

If the cueff‘ic:.ents of the polynomisl ;n—‘

coefficlents EPJ may be most easily found by synthetic divisionm of il by c‘:}j o

Since .3*;; is a root of Tl , the remainder should be zero, which serves as a

v

(% - &) ore knowm, the



check. For instance, if the 31: are the Gaussian guadrature pbints,W will
be the Legendre polynomial of degree n with a leading coefficient of unity.

On combining all constant terms, one can write pl{u) as

A

P(u,) = Z Z: E-J(um‘ o Wy LLP-') d;

o,
J=tr =
with

— Em‘
s = GE-1)° T7Gm 3)

Performing the integration indicated in (11) gives
e

[ A p+ P+3
(2) = e X 2

5

and
D
Or(éé)‘:: C,}"*"Cp_ +Z7 G‘LJ d‘.j
. 4B
with
iAd
Gzlj = PZ;‘ ZLP Fes
and with
_ %’;*5 3 3?5 . I::‘H

P Gra)(Pt5)  (pe2)fpr3)  PipH)

The constants Cl and C

(12)

(13)

(14)

p Bare functions of the quantities d 3

In order to evaluate them it will be assumed that the bar has (a) zero linear

momentum and (b) zero anguler momentum. Condition (&) gives

J q(3)d3 =0

Substitubing (13) into the integral and evaluating it give

Cz = JZ;‘-\FJ d;

(18)



where " ,
(=0 (i ~ G
P =T 2em4, 5 LCmasizmsdyarmd)  (Zmaemra)2med) (mmm(zma))

It is assumed that n 1is even.
Using condition (b) of zero angular momenbtum gives

| .
| (3) dz3= 0 (16)
| 13994
and in e similer wey C; "is found to be
: . "
C1 = JZ, e d;
. Where ‘ .
€=-3 e g 1 - 2 ]
T YT famp \emenames)amis) (25} am43)(2me2) (am+3)(2m+x)zm)

Thus gf xi) cen finally be expressed as

Gx) = i: G oy

=t

1)

with

{t

Cij = Gy+3&+f
The potential erergy of the beam (2) can now be expressed as a quad=
ratic form in the quentities d, . Use of the interpolation polynomial P{ 3.) '
to approximate v'( 3-) gives for the potential energy
. 4 \
- TalE j P da
Vo % } (3 a3
Using s quadraﬁure formula with quadrature'pointa J"’J (3 =21,2,00 21}

gives
. 4 )
V = Tk pgf

since P{ ;i) = d, . The guantities R, are the welghting factors. of the
In matrix form V can be written as

Vo= T4E d'Ad

quadrature formula.
(18)



with & a colum matrix composed of the di and A a diagonal, nxn,
matrix composed of the weights of the quadrature formula. The symbol T de~
notes the transpose of the matrix.

The kinetic energy of the beam is obtained from (3) by substituting
g 3) for v 5) and applying a quadrature formula, The result is

”

with S _
'T\' . a .
Bip = L RiCyCic
This expi'essien. can slso be written in matrix 'fo‘rm as

Ts ’uPa)a dBd . : . (195

where

(Q

Fo;:" the kinetic energy of the fluid we ﬁave [3]
L [ ad
T;‘ e Sq() on CLS

vhere the integration extends over the surface of the cylinder. In terms of

cylindrical coordinates this assumes the form

:.—.mmfa,jf a¢ d.edé,' r= Q (20)

The potential CP is essumed to be due to an a.xial distribution of doublats
/,g( 3 oriented in the direction 6 =T/2, Thus. the velocity potential is

b= -yl s (2

where Ra

i

'X.2+ !32 +(%_§)2 . (Z_Qz_{_qz

and

t{
i

7 cos B g::/z,dima@

! . i
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At r = a we obtain then
-3 ’

2 2
in which RO“ @ (5 -~§§) + a.2> Also the boundary condition at the surface of
the cylinder yields

Y _ . n O :
5—;—-!“&-« w v(3) én - (22)

The kinetic energy of the fluid is then

5 of3T 2, (! Pori)
Te=- T“’"‘L”m o [ vy 5_, ‘é‘g‘g ot by de

The kinevic energy can hence be written as .
. YA o .
T, = -‘EE‘-Z-%“_'U@)/‘-(:) m{3,8) df 3 @
where

!
"o = v

Since m(%,g ) is swell except in the neighborbood of & = 2 » where
it rises to a sharp pesk, it is desirable to reduce the rapid change in the
integrand in that neighborhood so that representation by a qua,dz:ature formula
is more accurate. This may be done by writing the expression as [4]

Lok e
+_’v<5) f&(g)f_jn(?;@‘) df"ib}

Substituting quadrature formulas for the integrals with the exception of

X’:m(z“k) Cl.g gives

»

Ty = - Thoa F‘ LRV p) My R+ 2 R;vz/w;ma}



with
V= v, R, My Emnd)
and

my = I‘m(%g,t‘)ig' = Bt N 3o\

1y a“((jﬁ‘)zfo.?]"‘ O.“‘_(z,;-l)Qi-C@)'“

The kinetic energy can be written as

Ti=- ﬁ?igz_"’zﬁc @}‘Mj Rﬁ; M 2 MRt 'Zé“f." 3“

{ZvR EMR + S tmm)pa e
" where | ‘
= Z mihl?k'
In matrix form . k
- _mf Q)Q.z T | 2 -
Te =-F2% v W | (25)

with . _ ,H"C
U= (Q}" ) ) # :( ?‘)
Vin P
_\L\/:(WL!')-ARMQ%'RS(YPL n)) )J ,,,,, n
On the boundery of the solid, r = & , we have from (22)

@ V(3) £in = 9¢ \

Hence, substa.tu‘bing for (‘P from (21), we obtain

w wg)/wne _[_..(1” M) d§)J

and thus

W v(3) mj‘qu)(-ﬁ% . %‘«) dt (e



with

V=V, miepG) , MyEmgd)
. and , ' ' » E
t
o _ - FTRA -
= Lm‘(%‘,k).dg‘ I (R R K T LR N

The kinetic energy can be written es

Te=

2 ¢ .
- TR (U, (M RL & i T MR m I, M |
o et (LR MR, + 5 (mg -y i (24)
where | : - .

_ e = 2,—:— me, Ry
In matrix form :

: | (25)
. 2
with g _ u,
v= (”’) ~ ) B =('s”)
U Pt
W= (W) = (ReMy R+ RS Omgmg)); =y
Or the boundary of the solid, r = sa , .we have from (22)
A ' 54
v = el
W (3)&»@9 Sy
Hence, substituting for 4) from (21), we obtain
) ; [y (&)
@ viamd =[Sy HE ),
and thus
| 2 ‘
W VvRE) =~ pe) (L -~ 284 (26)
) == H0Gs - e
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This is the integral equation for the unknown distribubtion of doublets,
)&(g, t} . A solution to it will now be approximated by use of & quadra-
ture formula.

If a modification in the integrand 1ls introduced as before, the
result is

o vy = -{([1s) -Hg) R G pig)f RGE)ES}

with ,
L

i 3
\’Q\(zig) = ((2";)%.*_'0"‘2)3/21 - ((5 _%)21. Q_z]slz

Substitution of a quadrature formula for the first integral gives
WY = _[ZRJHK.‘J»)«{)._‘RJ Kij + him (e
L 3 J .

.. in. which : ) ’<” . h(%b)\;})
.and . - .
ki = kG = [RGoE) g
S S "
*{ az((ilé"')z'(-a?j’/l + {53‘_,)2_‘_0}}?’2 +

[ +30 + |+ 3 }
a3 +) R R D T R

i

The relation between the velocity of the boundary and the doublet
distr¢butlon can be writiten more convenlently as

@ U(a) = ""L; Hz;f*}

where

(H) = (Riky+ 8 “Sf))

and

5 = %: KitkiLh



* ' 80 that we obtain

and
WY = - Hp (28)
Thus,
Lol '
=g (29)

When (23) for \ is substituted into (25) for the kinetic energy,
the result is ‘

: Py UV wh o

2 2 .
Te = T Ty’
But from (17) we ha;re

1);((3)" q(ﬁ) =z C‘J

Jat

7:@# a@ﬂﬂgé

TR gTBd ()
with ‘ -
TWH G

Thus, .in summary, for the potential energy we have

w
10,

T
\/ T E 4 Ad
= A~ {18)
. 8 |
and for the kinetic energy, c_om'bining 'I'f end T g » e have
22 T
T = f’iﬁ%@_fz d' Bd (1)
where :
B = .Bs+ ‘&”BF
78

To complete the anelysis 1t is necessary to compute the frequencies
so that they can be.compsred with those obtained by the two-dlmensional

-
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assumption. From a physical view, what bas been done is to replace the contine
uous cylindrical beam, & system with an infinite mumber of degrees of freedom,
by & system with n degrees of freedom, n being the nuwber of ordinates
used for the quadraturé formile. The pertial differential equetion for the
beam vibration is then replaced by n ordinary differential equations. By
treating the guantities di as the amplitudes of a system of generalized coor-
dinates, one obtains the frequency determinant equation Por the system [1]

O | a . {32)

IA _’)\B':
Where
. 480
A = e 2 (33)

o o
An elternative method which could be used to obtain (32} is the Reyleigh-Ritz
procedure. Thé expressions for the potential and kinetic energies have been
expressed as quedratic forms in terms of n unknown quantitles, the di o
Since the sum V + T is constant for a free vibration of the system, we have

dAd -NdBd = const BERCY

In this quadratic form, the coefficlents dj are to be chosen so that the
frequency is a minimum. Partial differentiation of (32) with respect to each
of the d, yields dynsmical equetions from which (32) is again obtained.

A simple example will be worked to illustrate the method. If n= 2,
then the Geussian quadrature points are (m0,57735027, 0.57735027). The calcu=
lations for this cese follow

- 57736027 57735027

S
i

Eo;
o = 1) TT’(E/” 2x)



i

[

( 1.1250000 l,lZSOOOO)

19485716 19485716

7 ( 3 2y _ 1 )
© N (P (P+s)(e+z) plprt)

o

( 4938272 026169139 ) |

JGUuQ38272  p26169139

i

(2)(E)

(2&%4800 MNT07312 ) ,

A1707312 21904800

_ iz i 2 . \
- ;Iﬁm-b]((zms)(sza)(mﬁ) - (zm+5)(zwz)(zmﬁ)m (zmﬂ)Zm(zm-Q)

= 15535714 je=th2

:._3yL ?‘”’( ‘ 2 _ -1A )

:m+7)(zm+s>(zmﬁ) (amtS)emeraRd)  (2mi3)amr) 2

= (12681086  -12681086 )

~.073214827 073214827 \

Ii

\ 073214827 —.omzmewj

Zigg+ b+ Gy

it

~.00952347 03492081
( 03492081 —\ooqszsw)
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&s a check on the caleulations, the frequencles of vibration will
be ccmputed for a beam vibrating in vacuo.

B,

In this case

i

Z..;’ RIQ CkL CR")

RR = A , h:i)z
B = CC

\ 43,1069 ~6.65495
8 =10 ~6.65695 13,1069

Since A = I the problem is most easily solved for the inverse of

the eigenvalues which are related to the frequencies.

That is,
& - KI|=0
where
~ K: ~l___
Thus, .
(3,106 107 K -6.65695% (07 |
-4 o4 = O
~6.65695 x10 13,1069 %10 - K

A convenient method of solving this determinant is first to add

the second column to the first, and then to subtract the second row from the
first. This gives

0 19,738 11744 K
=()

6.4500x 107K 131069 » lb“’—k

and then

K, = 645005107

K,=19.7638<107 A =



Comperable values sre avallable from Timoshenko [2], where & solu-
tion for the one~dimensional flexural vibration of a free-free beam is given.
The fourth root of A here is comparable to the value given by Timoshenko.
Table I presents a comparison of \/T with the square of Timoshenko's value.
This value is proportiocnal to oo, the frequency as given by (33)

Table I « Comparison of Bigenvalues for Frec-FPree Beam
Vibrating in Vacuo

Timoshenko Quadrature Method (n = 2)
1st mode 22.37 22.49 .
2nd mode 61.67 39.36

To include the effect of the fluid, it 1s first necessary to celcu=
late the matrix B, . For this purpose the radius was taken to be & = 0.10.
The ratic of fluld density to solid density used was 0.365, which is repre-
sentative of aluminum in water.

M.. !

LI (e e

( £000.0000 64769655 \

\ 164769665 Ho008.0000 Jj

my = 2t - gi-!
Ry e ya e DRRTHEE
YYLL:: 797.02912 ,{'. =1,2

3
[
M3

- M?.R Rp\
R =1 k=12

roy

E000.6476 9,55 L=12

)

3
!

Wij = R MRy + RS (i)
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. 796.38150 , 64769655

- H4T69655 796.38150

Kooo ‘ _ 3t “
'.-J :(:()V-(%j,‘! )Z+Q:i}31;2 [{-2£_23?2+a&§3!“

~16000.0000 61406008
) 64406009 ~16000,0000

[~ %L. } - 3:
d‘{(}dﬂ)%a‘]\n T U}iﬂ)‘z;az}sjz +

N
it
P P

1+ % , I+ E‘uf 4
QEL(}L‘H);“’QL}TFZ T [(2(:1_,)@!_&2}3/2

k; = -802.913(p L= 12
fy

S¢ = 2 R, K

Si= -15999,356 L=

H(,j = RJ' Kq + ng (h(_~5i_)

B (»803.557!4 ‘eqeoecms)
T\ 64406008 -3803.55714

)



H.‘ _ \63 12444673 44745459% 107
- 7 GAME45900°¢ 12444473
T -4
By = CW(HC
L, [ 124731 -65719
B{; = 10
= ~6,57119 12.9739
_h
._B - “é@g'}'ﬁs
B _ ,O-L.(w.awo ~9.05003
- \_~ 905003 17.8370
B —KA|= 0
A=1
17.8370 x|07- K ~9.0500%%10™
-q,05003x% 10" 128370 x107" =K B
K, = 878698107 A, = 1138.05

K, = 26,8870 x 107 A= 371926



wl18e

A compariscn with values obtained using two-dimensionel strip theory
can be made by dividing the values in Teble I by Vl +'9f/§;", This ecomparison
is given in Table II.

Table II « Comparison of Eigenvalues for Free«Free Circular
Muvminum Beam of Length-Dismeter Ratio 10 Vibrat-

ing 1n Water
Strip Theory More Exact Theory
Timoshenko  Quadrature Method (n = 2) | Quadrature Method (n = 2)
lst mode 19.15 19.25 15.38
2nd mode 52.78 35.70 . 33.78

Considering that the system has been allowed only two degrees of
freedom (n = 2) , one sees that the agreement between the esigenvalues for the
first mode is remarkably good. In this mode the frequency given by the more
exact theory exceeds that by strip. theory by 0.67 percent. The corresponding
three-dimensionsl correction factor obtained from & two-nmode vibration of a
spheroid of length-diameter ratio 10 [5] is 1.09, an increase in frequency of
9 percent. Calculstions of the eigenvalues with larger velues of n are pres-
ently wder way, and it will not be clear whether the very small correction to

the frequencies given by strip theory is a valid one until this work is come
pleted.
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